乐新安,男,研究员,博士生导师,国科大岗位教授,1980年出生于湖北省。国家杰出青年科学基金获得者、中组部青年人才计划入选者、中国科学院稳定支持基础研究青年团队骨干。曾在美国大气研究联盟(UCAR)工作7年,围绕GNSS掩星技术开展过系统研究。目前从事非相干散射雷达探测技术、电离层物理、电离层数值模拟与数据同化等相关的基础与应用基础研究。自主发展了基于稀疏矩阵的高效卡尔曼滤波电离层数据同化算法。作为首席科学家领导建设完成了世界首套相控阵体制的多站式非相干散射雷达——三亚非相干散射雷达三站式系统,建设成果被央视新闻联播报道。深度参与了国家大科学装置——子午工程二期的建设。在Nature Astronomy、GRL、JGR等杂志发表论文200余篇,其中第一/通讯论文80余篇,引用4000多次,H指数40。近五年在国内外会议作邀请报告20余次,受邀参加 ISSI 国际合作团队4次。
【研究方向】
【社会兼职】
1.Yue, X., Wan, W., Ning, B., Jin, L. (2022). An active phased array radar in China. Nature Astronomy, 6, 619. https://doi.org/10.1038/s41550-022-01684-1
2.Yue, X., Wan, W., Ning, B., Jin, L., Ding, F., Zhao, B., et al. (2022). Development of the Sanya incoherent scatter radar and preliminary results. Journal of Geophysical Research: Space Physics, 127, e2022JA030451. https://doi.org/10.1029/2022JA030451
3.Yue, X., Cai, Y., Ren, Z., Zhou, X., Wei, Y., & Pan, Y. (2022). Simulated long-term evolution of the ionosphere during the Holocene. Journal of Geophysical Research: Space Physics, 127, e2022JA031042. https://doi.org/10.1029/2022JA031042
4.Cai, Y., Yue*, X., Wang, W., Zhang, S.-R., Liu, H., Lei, J., et al. (2022). Ionospheric topside diffusive flux and the formation of summer nighttime ionospheric electron density enhancement over Millstone Hill. Geophysical Research Letters, 49, e2021GL097651. https://doi.org/10.1029/2021GL097651
5.Zhou, X., Yue*, X., Ren, Z., Liu, Y., Cai, Y., Ding, F., & Wei, Y. (2022). Impact of anthropogenic emission changes on the occurrence of equatorial plasma bubbles. Geophysical Research Letters, 49, e2021GL097354. https://doi.org/10.1029/2021GL097354
6.Zhou, X., Yue, X.*, Yu, Y., & Hu, L. (2022). Day-to-day variability of the MLT DE3 using joint analysis on observations from TIDI-TIMED and a meteor radar meridian chain. Journal of Geophysical Research: Atmospheres, 127, e2021JD035794. https://doi.org/10.1029/2021JD035794
7.Wan, W., Zhou, X., Yue, X.*, Wei, Y., Ding, F., & Ren, Z. (2022). Interpretation of the altitudinal variation in the Martian ionosphere longitudinal wave-3 structure. Journal of Geophysical Research: Space Physics, 127, e2021JA030096. https://doi.org/10.1029/2021JA030096
8.He, J., Yue, X.*, Astafyeva, E., Le, H., Ren, Z., Pedatella, N. M., Ding, F., & Wei, Y. (2022). Global gridded ionospheric electron density derivation during 2006–2016 by assimilating COSMIC TEC and its validation. Journal of Geophysical Research: Space Physics, 127, e2022JA030955. https://doi.org/10.1029/2022JA030955
9.He, J., Yue, X.*, Le, H., Ren, Z., & Ding, F. (2022). High-resolution and accurate low-latitude gridded electron density generation and evaluation. Journal of Geophysical Research: Space Physics, 127, e2021JA030192. https://doi.org/10.1029/2021JA030192
10.Li, M., Yue, X.*, Wang, Y., Wang, J., Ding, F., Vierinen, J., et al. (2022). Moon imaging technique and experiments based on Sanya incoherent scatter radar. IEEE Transactions on Geoscience and Remote Sensing, 60, 1– 14. https://doi.org/10.1109/TGRS.2022.3167156
11.Zeng, L., Yue, X.*, Ke, C., Ding, F., Zhao, B., & Ning, B. (2022). Potential direct observation of meteoroid fragmentation by a high range resolution radar. Icarus, 372, 114763. https://doi.org/10.1016/j.icarus.2021.114763
12.Cai, Y., Yue, X.*, Wang, W., Zhang, S.-R., Liu, H., Lin, D., et al. (2022). Altitude extension of the NCAR-TIEGCM (TIEGCM-X) and evaluation. Space Weather, 20, e2022SW003227. https://doi.org/10.1029/2022SW003227
13.Li, M., Yue, X.* & Wan, W. A new method to calibrate residual ionospheric error of GNSS RO bending angle. GPS Solutions, 26, 59 (2022). https://doi.org/10.1007/s10291-022-01235-1
14.Wang, J., Yue, X.*, Ding, F., Ning, B., Jin, L., Ke, C., et al. (2022). Simulation and observational evaluation of space debris detection by Sanya incoherent scatter radar. Radio Science, 57, e2022RS007472. https://doi.org/10.1029/2022RS007472
15.Li M, Yue X*, Ding F, Ning B, Wang J, Zhang N, Luo J, Huang L, Wang Y, Wang Z. Focused Lunar Imaging Experiment Using the Back Projection Algorithm Based on Sanya Incoherent Scatter Radar. Remote Sensing. 2022; 14(9):2048. https://doi.org/10.3390/rs14092048
16.Zhang N, Yue X*, Ding F, Ning B, Wang J, Luo J, Wang Y, Li M, Cai Y. Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar. Remote Sensing. 2022; 14(13):3138. https://doi.org/10.3390/rs14133138
17.Wang J, Yue X*, Ding F, Ning B, Jin L, Ke C, Zhang N, Luo J, Wang Y, Yin H, Li M, Cai Y. The Effect of Space Objects on Ionospheric Observations: Perspective of SYISR. Remote Sensing. 2022; 14(20):5092. https://doi.org/10.3390/rs14205092
18.Zhou X, Yue X*, Liu L, Yu Y, Ding F, Ren Z, Jin Y, Yin H. Decadal Continuous Meteor-Radar Estimation of the Mesopause Gravity Wave Momentum Fluxes over Mohe: Capability Evaluation and Interannual Variation. Remote Sensing. 2022; 14(22):5729. https://doi.org/10.3390/rs14225729
19.Yin, H., Yue, X.*, Wang, J., Ding, F., Ning, B., Wang, Y., Li, M., & Zhang, N. (2022). Chinese Journal of Geophysics- Chinese Edition. 65(7):2394-2401. https://doi.org/10.6038/cjg2022P0987
20.He, J., Yue, X.*, & Ren, Z. (2021). The impact of assimilating ionosphere and thermosphere observations on neutral temperature improvement: Observing system simulation experiments using EnKF. Space Weather, 19, e2021SW002844. https://doi.org/10.1029/2021SW002844
21.He, J., & Yue, X.* (2021). The impact of perturbing eddy diffusion and upper boundary on the ionosphere EnKF assimilation system. Journal of Geophysical Research: Space Physics, 126, e2021JA029366. https://doi.org/10.1029/2021JA029366
22.Cai, Y., Wang, W., Zhang, S.-R., Yue, X.*, Ren, Z., & Liu, H. (2021). Climatology analysis of the daytime topside ionospheric diffusive O+ flux based on incoherent scatter radar observations at Millstone Hill. Journal of Geophysical Research: Space Physics, 126, e2021JA029222. https://doi.org/10.1029/2021JA029222
23. Zhou, X., Yue, X.*, Liu, H.-L., Lu, X., Wu, H., Zhao, X., & He, J. (2021). A comparative study of ionospheric day-to-day variability over Wuhan based on ionosonde measurements and model simulations. Journal of Geophysical Research: Space Physics, 126, e2020JA028589. https://doi.org/10.1029/2020JA028589
24.Li, M. and Yue, X.*: Statistically analyzing the effect of ionospheric irregularity on GNSS radio occultation atmospheric measurement, Atmos. Meas. Tech., 14, 3003–3013, https://doi.org/10.5194/amt-14-3003-2021, 2021.
25.Zhou, X., Yue, X.*., Liu, H.-L., Wei, Y. and Pan, Y. X. (2021). Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations. Earth Planet. Phys., 5(4), 327–336 doi: 10.26464/epp2021040
26.Yue, X. A. *, Wan, W. X., Xiao, H., Zeng, L. Q. *, Ke, C. H., Ning, B. Q., Ding, F., Zhao, B. Q., Jin, L., Li, C., Li, M. Y., Wang, J. Y., Hao, H. L. and Zhang, N. (2020). Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar. Earth Planet. Phys., 4(6), 579–587doi: 10.26464/epp2020063.
27.Mingyuan Li; Xinan Yue*; Biqiang Zhao; Ning Zhang; Junyi Wang; Lingqi Zeng; Honglian Hao; Feng Ding; Baiqi Ning, Weixing Wan (2020), "Simulation of the Signal-to-Noise Ratio of Sanya Incoherent Scatter Radar Tristatic System," in IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2020.3008427.
28.He, J., Yue, X. *, Hu, L., Wang, J., Li, M., & Ning, B., et al. (2020). Observing system impact on ionospheric specification over China using EnKF assimilation. Space Weather, 18, e2020SW002527. https://doi.org/10.1029/2020SW002527
29.Li, M., Yue, X. *, Wan, W., & Schreiner, W. S. (2020). Characterizing ionospheric effect on GNSS radio occultation atmospheric bending angle. Journal of Geophysical Research: Space Physics, 125, e2019JA027471. https://doi.org/10.1029/2019JA027471
30.Zhou, X., Liu, H.‐L., Lu, X., Zhang, R., Maute, A., Wu, H., Yue, X. *, and Wan, W. (2020). Quiet‐time day‐to‐day variability of equatorial vertical E × B drift from atmosphere perturbations at dawn. Journal of Geophysical Research: Space Physics, 125, e2020JA027824. https://doi.org/10.1029/2020JA027824
31.何建辉, 乐新安* .2020.基于热层电离层耦合数据同化的热层参量估计. 地球物理学报,63(7): 2497-2505, doi: 10.6038/cjg2020N0267
32.Chengli She; Xinan Yue*; Lianhuan Hu; Fengguo Zhang (2020), Estimation of Ionospheric Total Electron Content From a Multi-GNSS Station in China, IEEE Transactions on Geoscience and Remote Sensing, 58(2): 852-860.
33.He, J., Yue, X.*, Le, H., Ren, Z., & Wan,W. (2020). Evaluation on the quasi‐realistic ionospheric prediction using an ensemble Kalman filter data assimilation algorithm. Space Weather, 18, e2019SW002410. https://doi.org/10.1029/2019SW002410.
34.姜金哲; 乐新安*; 任志鹏; 万卫星 (2020), 利用GCITEM-IGGCAS模拟DE2潮汐Hough波模对电离层的影响, 地球物理学报, 63(1): 57-62.
35.He, J., Yue, X.*, Wang, W., & Wan, W. ( 2019). EnKF ionosphere and thermosphere data assimilation algorithm through a sparse matrix method. Journal of Geophysical Research: Space Physics, 124, 7356– 7365. https://doi.org/10.1029/2019JA026554.
36.王林; 万卫星; 乐新安*; 任志鹏; 佘承莉 (2019), 应用经验正交函数估算顶部电离层电子密度剖面,地球物理学报, 62(05): 1582-1590.
37.Chen, T., Wan, W., Xiong, J., Yu, Y., Ren, Z., & Yue, X.* (2019). A statistical approach to quantify atmospheric contributions to the ITEC WN4 structure over low latitudes. Journal of Geophysical Research: Space Physics, 124, 2178–2197. https://doi.org/10.1029/2018JA026090.
38.Cai, Y., Yue, X.*, Wang, W., Zhang, S., Liu, L., Liu, H., & Wan, W. (2019). Long‐term trend of topside ionospheric electron density derived from DMSP data during 1995–2017. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA027522.
39.Yue, X., Hu, L., Wei, Y., Wan, W., & Ning, B. (2018). Ionospheric trend over Wuhan during 1947–2017: Comparison between simulation and observation. Journal of Geophysical Research: Space Physics, 123, 1396–1409. https://doi.org/10.1002/2017JA024675
40.Hu, L., X. Yue*, and B. Ning (2017), Development of the Beidou Ionospheric Observation Network in China for space weather monitoring, Space Weather, 15, 974–984, doi:10.1002/2017SW001636.
41.Yue, X., W. Wan, L. Liu, J. Liu, S. Zhang, W. S. Schreiner, B. Zhao, and L. Hu (2016), Mapping the conjugate and corotating storm-enhanced density during 17 March 2013 storm through data assimilation, J. Geophys. Res. Space Physics, 121, 12202-12210, doi:10.1002/2016JA023038
42.Yue, X., W. Wang, J. Lei, A. Burns, Y. Zhang, W. Wan, L. Liu, L. Hu, B. Zhao, and W. S. Schreiner (2016), Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm, J. Geophys. Res. Space Physics, 121, 9234–9249, doi:10.1002/2016JA022984
43.Yue, X., W. S. Schreiner, N. M. Pedatella, and Y.-H. Kuo, 2016: Characterizing GPS radio occultation loss of lock due to ionospheric weather, Space Weather, 14, doi:10.1002/2015SW001340.
44.Yue, X., Y.-H. Kuo, Z. Zeng, and W. Wan, 2016: GNSS radio occultation technique for near-Earth space environment detection, Chinese J. Geophys. (in Chinese), 59(4): 1161-1188, doi:10.6038/cjg20160401. [乐新安, 郭英华,曾桢,万卫星, 2016: 近地空间环境的GNSS无线电掩星探测技术,地球物理学报,59(4): 1161-1188, doi:10.6038/cjg20160401]
45.Yue,X., W. S. Schreiner, Y.-H. Kuo, and J. Lei, 2015: Ionosphere equatorial ionization anomaly observed by GPS radio occultations during 2006–2014, J. Atmos. Sol.-Terr. Phys., 129: 30-40, doi:10.1016/j.jastp.2015.04.004.
46.Yue, X., W. S. Schreiner, Z. Zeng, Y.-H.Kuo, and X. Xue, 2015: Case study on complex sporadic E layers observed by GPS radio occultations. Atmos. Meas. Tech., 8, 225-236, doi:10.5194/amt-8-225-2015.
47.Yue, X., W. S. Schreiner, N. Pedatella, R. A. Anthes, A. J. Mannucci, P. R. Straus, and J.-Y. Liu, 2014: Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2, Space Weather, 12, doi:10.1002/2014SW001133.
48.Yue, X., W. S. Schreiner, Y.-H. Kuo, J. J. Braun, Y.-C. Lin, and W. Wan, 2014: Observing System Simulation Experiment Study on Imaging the Ionosphere by Assimilating ground GNSS, LEO based Radio Occultation and Ocean Reflection, and Cross Link, IEEE Trans. Geosci. Remote Sens., 52(7), 3759-3773, doi:10.1109/TGRS.2013.2275753.
49.Yue, X., et al., 2013: The effect of the solar radio bursts on the GNSS radio occultation signals. J. Geophys. Res., 118, 5906–5918, doi:10.1002/jgra.50525.
50.Yue, X., W. S. Schreiner, and Y.-H. Kuo, 2013: Evaluating the effect of the global ionospheric map on aiding retrieval of radio occultation electron density profiles. GPS Solutions, 17(3), 327-335, doi:10.1007/s10291-012-0281-9.
51.Yue, X., W. S. Schreiner,Y.-H. Kuo, Q. Wu, Y. Deng, and W. Wang, 2013: GNSS radio occultation derived electron density quality in high latitude and polar region: NCAR-TIEGCM simulation and real data evaluation. J. Atmos. Sol.-Terr. Phys., 98: 39-49, doi:10.1016/j.jastp.2013.03.009.
52.Yue, X., W. S. Schreiner, C. Rocken, and Y.-H. Kuo, 2013: Validate the IRI2007 model by the COSMIC slant TEC data during the extremely solar minimum of 2008. Adv. Spa. Res., 51, 647-653, doi:10.1016/j.asr.2011.08.011.
53.Yue, X., W. S. Schreiner, Y.-H. Kuo, and C. Rocken (2013), GNSS radio occultation technique and space weather monitoring, Proceedings of the 26th International Technical Meeting of The Satellite Division (IONGNSS2013), Nashville, TN, 2508-2522.
54.Yue, X., W. S. Schreiner,Y.-H. Kuo, D. Hunt , W. Wang, S. Solomon , A. Burns , D. Bilitza , J. Y. Liu , W. Wan , and J. Wickert, 2012: Global 3-D Ionospheric Electron Density Reanalysis based on Multi-Source Data Assimilation. J. Geophys. Res., 117, A09325, doi:10.1029/2012JA017968.
55.Yue, X., W. S. Schreiner,and Y.-H. Kuo, 2012: A feasibility study of the radio occultation electron density retrieval aided by a global ionospheric data assimilation model. J. Geophys. Res.,117, A08301, doi:10.1029/2011JA017446.
56.Yue, X., W. S. Schreiner, C. Rocken, Y.-H. Kuo, and J. Lei, 2012: Artificial ionospheric Wave Number 4 structure below the F2 region due to the Abel retrieval of Radio Occultation measurements. GPS Solutions, 16(1), 1-7, doi:10.1007/s10291-010-0201-9.
57.Yue, X., W. S. Schreiner, C. Rocken, and Y.-H. Kuo, 2011: Evaluation of the orbit altitude electron density estimation and its effect on the Abel inversion from radio occultation measurements. Radio Sci., 46, RS1013, doi:10.1029/2010RS004514.
58.Yue, X., W. S. Schreiner, D. Hunt, C. Rocken, and Y.-H. Kuo, 2011: Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination, Space Weather, 9, S09001, doi:10.1029/2011SW000687.
59.Yue, X., W. S. Schreiner, Y.-C. Lin, C. Rocken, Y.-H. Kuo, and B. Zhao, 2011: Data assimilation retrieval of electron density profiles from radio occultation measurements. J. Geophys. Res., 116, A03317, doi:10.1029/2010JA015980.
60.Yue, X., W. S. Schreiner, J. Lei, C. Rocken, D. C. Hunt, Y.-H. Kuo, and W. Wan, 2010: Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res., 115, A00G09, doi:10.1029/2010JA015466.
61.Yue, X., W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken, D. C. Hunt, and Y.-H. Kuo, 2010: Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann. Geophys., 28(1), 217–222, doi:10.5194/angeo-28-217-2010.
62.Yue, X., W. S. Schreiner, J. Lei, C. Rocken, Y.-H. Kuo, and W. Wan, 2010: Climatology of ionospheric upper transition height derived from COSMIC satellites during the solar minimum of 2008. J. Atmos. Sol.-Terr. Phys., 72(17), 1270-1274, doi:10.1016/j.jastp.2010.08.018.
63.Yue, X., W. Wan, L. Liu, B. Ning, B. Zhao, G. Li, and B. Xiong (2010), Development of an ionospheric numerical assimilation nowcast and forecast system based on Gauss-Markov kalman filter-An observation system simulation experiment taking example for China and its surrounding area, Chinese J. Geophys., 53(4), 787-795, doi:10.3969/j.issn.0001-5733.2010.04.003.
64.Yue, X., W. Wan, L. Liu, H. Le, Y. Chen, and T. Yu (2008), Development of a middle and low latitude theoretical ionospheric model and an observation system data assimilation experiment, Chin. Sci. Bull., 53(1), 94-101. [乐新安,万卫星,刘立波,乐会军,陈一定,余涛 (2007),中低纬电离层理论模式的构建和一个观测系统数据同化试验,科学通报,52(18), 2180-2186]
65.Yue, X., W. Wan, L. Liu, B. Ning, B. Zhao, and M.-L. Zhang (2008), TIME-IGGCAS model validation: Comparisons with empirical models and observations, Sci. China Ser. E-Tec. Sci., 51(3), 308-322. [乐新安,万卫星,刘立波,宁百齐,赵必强,张满莲 (2008),TIME-IGGCAS模式与经验模式和观测数据的比较,中国科学E辑:技术科学,38(7), 993-1008.]
66.Yue, X., W. Wan, J. Lei, and L. Liu (2008), Modeling the relationship between E × B vertical drift and the time rate of change of hmF2 (ΔhmF2/Δt) over the magnetic equator, Geophys. Res. Lett., 35, L05104, doi:10.1029/2007GL033051.
67.Yue, X., L. Liu, W. Wan, Y. Wei, and Z. Ren (2008), Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century, J. Geophys. Res., 113, A10301, doi:10.1029/2007JA012995.
68.Yue, X., W. Wan, L. Liu, and T. Mao (2007), Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations, Ann. Geophys., 25, 1815–1825.
69.Yue, X., W. Wan, L. Liu, F. Zheng, J. Lei, B. Zhao, G. Xu, S. Zhang, and J. Zhu (2007), Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman filter, Radio Sci., 42, RS6006, doi:10.1029/2007RS003631.
70.Yue, X., W. Wan, L. Liu, and B. Ning (2006), An empirical model of ionospheric foE over Wuhan, Earth Planets Space, 58, 323-330.
71.Yue, X., W. Wan, L. Liu, B. Ning, and B. Zhao (2006), Applying artificial neural network to derive long-term foF2 trends in the Asia/Pacific sector from ionosonde observations, J. Geophys. Res., VOL. 111, A10303, doi:10.1029/2005JA011577.